The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra

dc.contributor.authorHallowell, K.
dc.contributor.authorWaldron, A.
dc.date.accessioned2019-02-13T19:09:32Z
dc.date.available2019-02-13T19:09:32Z
dc.date.issued2007
dc.description.abstractLichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier-Jacobi Lie algebra of sp(2,R). These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier-Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. It is a pleasure to thank the organizers of the 2007 Midwest Geometry Conference, and especially Susanne Branson for a truly excellent meeting in honor of Tom Branson. We thank David Cherney, Stanley Deser, Rod Gover, Andrew Hodge, Greg Kuperberg, Eric Rains and Abrar Shaukat for discussions.uk_UA
dc.identifier.citationThe Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebra / K. Hallowell, A. Waldron // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 17 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.otherWaldron
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147212
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleThe Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier-Jacobi Algebrauk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
89-Hallowell.pdf
Розмір:
274.03 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: