Блочная модификация сэмплирования по Гиббсу для распознавания скрытых марковских полей

dc.contributor.authorВодолазский, Е.В.
dc.contributor.authorЛатюк, С.А.
dc.date.accessioned2018-11-29T18:23:30Z
dc.date.available2018-11-29T18:23:30Z
dc.date.issued2018
dc.description.abstractИсследовано применение сэмплирования по Гиббсу и его модификаций для распознавания скрытых марковских полей, а также конструктивный метод реализации его блочной модификации распознавания изображений для случая, когда блоками служат строки изображения. Предложено использование нового метода оценки математического ожидания для задач распознавания на структурах, разметки которых обладают марковским свойством.uk_UA
dc.description.abstractМета статті — демонстрація існування конструктивної реалізації блочної модифікації семплування за Гібсом для розпізнавання зображень. Порівняння її роботи зі стандартною реалізацією та пошук текстур, на яких блочна модифікація працює краще. Перевірка придатності запропонованого методу оцінки математичного сподівання для використання при розпізнаванні прихованих марківських полів. Методи. Блочну модифікацію семплування за Гібсом для розпізнавання зображень побудовано на принципах динамічного програмування. Додаток, що дозволяє генерувати зображення заданої текстури, обирати потрібну модифікацію семплування за Гібсом розв’язку задачі розпізнавання та отримати графіки залежності швидкості розпізнавання кожного алгоритму від часу реалізовано на мові Python з використанням бібліотеки Cython для написання розширень на мові С. Результат. Виявлено, що блочна модифікація семплування за Гібсом на так званих «монотонних» текстурах при високому рівні шуму працює краще, ніж стандартний алгоритм. На «діагональних» текстурах, які дуже часто зустрічаються, блочна модифікація працює не гірше, ніж загальновідомий метод. Також виявлено, що на «монотонних» текстурах запропонований метод для оцінки математичного сподівання демонструє кращі результати, ніж загальноприйнятий.uk_UA
dc.description.abstractPurpose of this paper is to demonstrate that blocking Gibbs sampling can be constructively implemented for solving image recognition problems. Secondly, we want to compare blocking modification with standard algorithm and find types of the textures, on which blocking modification will give better results. And, finally, we want to test validity of the proposed method for estimation of expectation. Methods. Blocking modification of Gibbs sampling for image recognition is built on the principles of dynamic programming. Software that allows to generate images of the given texture, choose proper modification of Gibbs sampling for solving the problem and show graphs using Python and Cython. Results.uk_UA
dc.identifier.citationБлочная модификация сэмплирования по Гиббсу для распознавания скрытых марковских полей / Е.В. Водолазский, С.А. Латюк // Управляющие системы и машины. — 2018. — № 2. — С. 31-41. — Бібліогр.: 5 назв. — рос.uk_UA
dc.identifier.issn0130-5395
dc.identifier.otherDOI: https://doi.org/10.15407/usim.2018.02.031
dc.identifier.udc004.318
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/144131
dc.language.isoruuk_UA
dc.publisherМіжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН Україниuk_UA
dc.relation.ispartofУправляющие системы и машины
dc.statuspublished earlieruk_UA
dc.subjectИнтеллектуальные информационные технологии и системыuk_UA
dc.titleБлочная модификация сэмплирования по Гиббсу для распознавания скрытых марковских полейuk_UA
dc.title.alternativeБлочна модифікація сэмплування за Гибсом для розпізнавання прихованих марковських полівuk_UA
dc.title.alternativeBlocking modification of Gibbs sampling for recognition of hidden Markov fieldsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
04-Vodolazskiy.pdf
Розмір:
709.52 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: