A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces

dc.contributor.authorBarbosa, Victor S.
dc.contributor.authorMenegatto, Valdir A.
dc.date.accessioned2025-12-22T09:23:24Z
dc.date.issued2020
dc.description.abstractThis paper is concerned with the construction of positive definite functions on a Cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and their many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.
dc.description.sponsorshipThe authors express their gratitude to the anonymous referees for their comments and remarks, which led to an improved version of the paper.
dc.identifier.citationA Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces. Victor S. Barbosa and Valdir A. Menegatto. SIGMA 16 (2020), 117, 15 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.117
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 42A82; 43A35
dc.identifier.otherarXiv:2006.12217
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211003
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleA Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
117-Barbosa.pdf
Розмір:
367.96 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: