The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
dc.contributor.author | Ormerod, C.M. | |
dc.date.accessioned | 2019-02-11T18:05:42Z | |
dc.date.available | 2019-02-11T18:05:42Z | |
dc.date.issued | 2011 | |
dc.description.abstract | We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI. | uk_UA |
dc.identifier.citation | The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 34M55; 39A13 | |
dc.identifier.other | DOI:10.3842/SIGMA.2011.045 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/146862 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 045-Ormerod.pdf
- Розмір:
- 428.25 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: