Galois orders of symmetric differential operators

dc.contributor.authorFutorny, V.
dc.contributor.authorSchwarz, J.
dc.date.accessioned2019-06-17T15:32:40Z
dc.date.available2019-06-17T15:32:40Z
dc.date.issued2017
dc.description.abstractIn this survey we discuss the theory of Galois rings and orders developed in ([20], [22]) by Sergey Ovsienko and the first author. This concept allows to unify the representation theories of Generalized Weyl Algebras ([4]) and of the universal enveloping algebras of Lie algebras. It also had an impact on the structure theory of algebras. In particular, this abstract framework has provided a new proof of the Gelfand-Kirillov Conjecture ([24]) in the classical and the quantum case for gln and sln in~[18] and~[21], respectively. We will give a detailed proof of the Gelfand-Kirillov Conjecture in the classical case and show that the algebra of symmetric differential operators has a structure of a Galois order.uk_UA
dc.description.sponsorshipSupported in part by CNPq grant (301320/2013-6) and by Fapesp grant(2014/09310-5) Supported in part by Fapesp grant (2014/25612-1)uk_UA
dc.identifier.citationGalois orders of symmetric differential operators / V. Futorny, J. Schwarz // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 35-46. — Бібліогр.: 41 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:13N10, 16D30, 16S32, 16S85.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/155929
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleGalois orders of symmetric differential operatorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Futorny.pdf
Розмір:
329.22 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: