Non-Commutative Resistance Networks

dc.contributor.authorRieffel, M.A.
dc.date.accessioned2019-02-10T15:10:53Z
dc.date.available2019-02-10T15:10:53Z
dc.date.issued2014
dc.description.abstractIn the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The research reported here was supported in part by National Science Foundation grant DMS1066368.uk_UA
dc.identifier.citationNon-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 46L87; 46L57; 58B34
dc.identifier.otherDOI:10.3842/SIGMA.2014.064
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146653
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleNon-Commutative Resistance Networksuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
53-Rieffel.pdf
Розмір:
627.79 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: