Исследование влияния запаздывания в одной математической модели динамики мирового развития
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Динаміці світового розвитку присвячено достатню кількість робіт. Але дуже мало з них мають чіткі абстрактні математичні моделі відповідних процесів. Дана робота присвячена подальшому поглибленню та математичній абстрактизації дослідження процесів світового розвитку. Проведено якісний аналіз лінійної та модифікованої нелінійної моделі у вигляді систем неоднорідних диференціальних рівнянь. Обчислено їх стаціонарні стани, записано явні аналітичні розв’язки. Вперше запропоновано модель з урахуванням фактора часового запізнювання, записану у вигляді функціонально-диференціальних рівнянь з відхиленням аргументу. Показано, що при такому введенні в модель аргументу, що запізнюється, систему можна звести до системи лінійних неоднорідних диференціальних рівнянь з постійними коефіцієнтами без запізнювання, і на стійкість стаціонарного стану рівноваги системи, що вивчається, впливатимуть лише лінійні члени рівнянь, що не містять відхилення аргументу. Цей факт добре співвідноситься з соціально-економічною інтерпретацією даної задачі. Надалі роботу буде спрямовано на вивчення впливу не одного, а декількох факторів часового запізнювання, коли модель буде подано у вигляді системи функціонально-диференціальних рівнянь з декількома різними аргументами, що відхиляються, в рівняннях, які відповідають за динаміку конкретного процесу, що є окремою складовою загальної динаміки світового розвитку.
There is a large number of works devoted to the dynamics of world development. But very few of them have clear abstract mathematical models of the corresponding processes. This work is devoted to further deepening and mathematical abstraction of the study of world development process. The qualitative analysis of linear and modified nonlinear model in the form of systems of inhomogeneous differential equations is carried out. Their steady states are calculated, explicit analytical solutions are presented. For the first time, a model taking into account the time delay factor is proposed, which is written in the form of functional-differential equations with argument deviation. It is shown that with such an introduction to the model of a delayed argument, the system can be reduced to a system of linear inhomogeneous differential equations with constant coefficients without delay, and the stability of the steady state of the system equilibrium under study will be affected only by linear terms of equations without argument deviation. This fact well correlates with the socio-economic interpretation of this problem. In the future, the work will focus on studying the influence of not one but several factors of time lag, when the model is presented as a system of functional-differential equations with several different deviating arguments in equations responsible for the dynamics of a particular process dynamics of world development.
There is a large number of works devoted to the dynamics of world development. But very few of them have clear abstract mathematical models of the corresponding processes. This work is devoted to further deepening and mathematical abstraction of the study of world development process. The qualitative analysis of linear and modified nonlinear model in the form of systems of inhomogeneous differential equations is carried out. Their steady states are calculated, explicit analytical solutions are presented. For the first time, a model taking into account the time delay factor is proposed, which is written in the form of functional-differential equations with argument deviation. It is shown that with such an introduction to the model of a delayed argument, the system can be reduced to a system of linear inhomogeneous differential equations with constant coefficients without delay, and the stability of the steady state of the system equilibrium under study will be affected only by linear terms of equations without argument deviation. This fact well correlates with the socio-economic interpretation of this problem. In the future, the work will focus on studying the influence of not one but several factors of time lag, when the model is presented as a system of functional-differential equations with several different deviating arguments in equations responsible for the dynamics of a particular process dynamics of world development.
Опис
Теми
Функционально-дифференциальные и импульсные системы управления
Цитування
Исследование влияния запаздывания в одной математической модели динамики мирового развития / Д.Я. Хусаинов, А.В. Шатырко, А.С. Бычков, Б. Пужа, В. Новотна // Проблемы управления и информатики. — 2021. — № 6. — С. 47-54. — Бібліогр.: 10 назв. — рос.