From Heun Class Equations to Painlevé Equations

dc.contributor.authorDereziński, Jan
dc.contributor.authorIshkhanyan, Artur
dc.contributor.authorLatosiński, Adam
dc.date.accessioned2025-12-30T15:57:32Z
dc.date.issued2021
dc.description.abstractIn the first part of our paper, we discuss linear 2nd order differential equations in the complex domain, especially Heun class equations, that is, the Heun equation and its confluent cases. The second part of our paper is devoted to Painlevé I-VI equations. Our philosophy is to treat these families of equations in a unified way. This philosophy works especially well for Heun's class equations. We discuss its classification into 5 supertypes, subdivided into 10 types (not counting trivial cases). We also introduce in a unified way deformed Heun class equations, which contain an additional non-logarithmic singularity. We show that there is a direct relationship between deformed Heun class equations and all Painlevé equations. In particular, Painlevé equations can also be divided into 5 supertypes and subdivided into 10 types. This relationship is not so easy to describe in a completely unified way, because the choice of the ''time variable'' may depend on the type. We describe unified treatments for several possible ''time variables''.
dc.description.sponsorshipJ.D. and A.I. would like to express their gratitude to Galina Filipuk for very useful discussions and remarks. A.I. acknowledges the support by the Armenian Science Committee (SC Grant No. 20RF-171), and the Armenian National Science and Education Fund (ANSEF Grant No. PS5701). The work of J.D. and A.L. was supported by the National Science Center (Poland) under the grant UMO-2019/35/B/ST1/01651.
dc.identifier.citationFrom Heun Class Equations to Painlevé Equations. Jan Dereziński, Artur Ishkhanyan and Adam Latosiński. SIGMA 17 (2021), 056, 59 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.056
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 34A30; 34B30; 34M55; 34M56
dc.identifier.otherarXiv:2007.05698
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211367
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleFrom Heun Class Equations to Painlevé Equations
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
056-Dereziński.pdf
Розмір:
702.92 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: