Selective Categories and Linear Canonical Relations

dc.contributor.authorLi-Bland, D.
dc.contributor.authorWeinstein, A.
dc.date.accessioned2019-02-09T21:06:45Z
dc.date.available2019-02-09T21:06:45Z
dc.date.issued2014
dc.description.abstractA construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which only certain morphisms and certain pairs of these morphisms are ''good''. We then apply this notion to the category SLREL of linear canonical relations and the result WW(SLREL) of our version of the WW construction, identifying the morphisms in the latter with pairs (L,k) consisting of a linear canonical relation and a nonnegative integer. We put a topology on this category of indexed linear canonical relations for which composition is continuous, unlike the composition in SLREL itself. Subsequent papers will consider this category from the viewpoint of derived geometry and will concern quantum counterparts.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Poisson Geometry in Mathematics and Physics. The full collection is available at http://www.emis.de/journals/SIGMA/Poisson2014.html. In this paper, we will not be discussing the important subject of deformation quantization, in which the connection between classical and quantum mechanics is realized by deformations of algebras of observables. Alan Weinstein would like to thank the Institut Math´ematique de Jussieu for many years of providing a stimulating environment for research. We thank Denis Auroux, Christian Blohmann, Sylvain Cappell, Alberto Cattaneo, Pavol Etingof, Theo Johnson-Freyd, Victor Guillemin, Thomas Kragh, Jonathan Lorand, Sikimeti Mau, Pierre Schapira, Shlomo Sternberg, Katrin Wehrheim, and Chris Woodward for helpful comments on this work. David Li-Bland was supported by an NSF Postdoctoral Fellowship DMS-1204779; Alan Weinstein was partially supported by NSF Grant DMS-0707137.uk_UA
dc.identifier.citationSelective Categories and Linear Canonical Relations / D. Li-Bland, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D50; 18F99; 81S10
dc.identifier.otherDOI:10.3842/SIGMA.2014.100
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/146541
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSelective Categories and Linear Canonical Relationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
17-Li-Bland.pdf
Розмір:
513.01 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: