Exponential Formulas, Normal Ordering and the Weyl-Heisenberg Algebra

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We consider a class of exponentials in the Weyl-Heisenberg algebra with exponents of type at most linear in coordinates and arbitrary functions of momenta. They are expressed in terms of normal ordering, where coordinates stand to the left of momenta. Exponents appearing in normal ordered form satisfy differential equations with boundary conditions that could be solved perturbatively order by order. Two propositions are presented for the Weyl-Heisenberg algebra in 2 dimensions and their generalizations in higher dimensions. These results can be applied to arbitrary noncommutative spaces for the construction of star products, coproducts of momenta, and twist operators. They can also be related to the BCH formula.

Опис

Теми

Цитування

Exponential Formulas, Normal Ordering and the Weyl-Heisenberg Algebra. Stjepan Meljanac and Rina Štrajn. SIGMA 17 (2021), 084, 7 pages

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced