On the Coprimeness Property of Discrete Systems without the Irreducibility Condition

dc.contributor.authorKanki, M.
dc.contributor.authorMase, T.
dc.contributor.authorTokihiro, T.
dc.date.accessioned2025-11-26T12:23:10Z
dc.date.issued2018
dc.description.abstractIn this article, we investigate the coprimeness properties of one and two-dimensional discrete equations in a situation where the equations are decomposable into several factors of polynomials. After experimenting on a simple equation, we shall focus on some higher power extensions of the Somos-4 equation and the (1-dimensional) discrete Toda equation. Our previous results are that all of the equations satisfy the irreducibility and the coprimeness properties if the r.h.s. is not factorizable. In this paper, we shall prove that the coprimeness property still holds for all of these equations, even if the r.h.s. is factorizable, although the irreducibility property is no longer satisfied.
dc.description.sponsorshipWe thank the referees for reminding us of several important papers regarding the Laurent systems and the discrete integrability. We acknowledge support from KAKENHI Grant numbers 26400109, 16H06711, and 17K14211.
dc.identifier.citationOn the Coprimeness Property of Discrete Systems without the Irreducibility Condition / M. Kanki, T. Mase, T. Tokihiro // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 24 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.065
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 37K10
dc.identifier.otherarXiv: 1804.02804
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209785
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleOn the Coprimeness Property of Discrete Systems without the Irreducibility Condition
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
065-Kanki.pdf
Розмір:
407 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: