Perturbative and Geometric Analysis of the Quartic Kontsevich Model

dc.contributor.authorBranahl, Johannes
dc.contributor.authorHock, Alexander
dc.contributor.authorWulkenhaar, Raimar
dc.date.accessioned2026-01-02T08:34:55Z
dc.date.issued2021
dc.description.abstractThe analogue of Kontsevich's matrix Airy function, with the cubic potential Tr(Φ³) replaced by a quartic term Tr(Φ⁴) with the same covariance, provides a toy model for quantum field theory in which all correlation functions can be computed exactly and explicitly. In this paper, we show that distinguished polynomials of correlation functions, themselves given by quickly growing series of Feynman ribbon graphs, sum up to much simpler and highly structured expressions. These expressions are deeply connected with meromorphic forms conjectured to obey blobbed topological recursion. Moreover, we show how the exact solutions permit us to explore critical phenomena in the quartic Kontsevich model.
dc.description.sponsorshipIt is a pleasure to dedicate this paper to Dirk Kreimer, who substantially supported this research project. The groundwork [31] was laid during the Les Houches 2018 summer school “Structures in local quantum field theories” organised by Spencer Bloch and Dirk Kreimer. AH and RW would like to thank Karen Yeats and Erik Panzer for the invitation to present our results at the IHES remote conference “Algebraic Structures in Perturbative Quantum Field Theory” in honour of Dirk Kreimer’s 60th birthday. Our work was supported⁸ by the Cluster of Excellence Mathematics M¨unster and the CRC 1442 Geometry: Deformations and Rigidity. AH is supported through the Walter Benjamin fellowship.⁹
dc.identifier.citationPerturbative and Geometric Analysis of the Quartic Kontsevich Model. Johannes Branahl, Alexander Hock and Raimar Wulkenhaar. SIGMA 17 (2021), 085, 33 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.085
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 81T18; 81T16; 14H81; 32A20
dc.identifier.otherarXiv:2012.02622
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211442
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titlePerturbative and Geometric Analysis of the Quartic Kontsevich Model
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
085-Branahl.pdf
Розмір:
890.18 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: