Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential (Hexp) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this Hexp map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra (𝖌𝔩(V), [⋅, ⋅], 𝐴𝑑), and the derivation Hom-Lie algebra of a Hom-Lie algebra.
Опис
Теми
Цитування
Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation. Jun Jiang, Satyendra Kumar Mishra and Yunhe Sheng. SIGMA 16 (2020), 137, 22 pages