The Measure Preserving Isometry Groups of Metric Measure Spaces

dc.contributor.authorGuo, Yifan
dc.date.accessioned2025-12-22T09:24:36Z
dc.date.issued2020
dc.description.abstractBochner's theorem says that if 𝑀 is a compact Riemannian manifold with negative Ricci curvature, then the isometry group Iso(𝑀) is finite. In this article, we show that if (𝘟, 𝘥, 𝑚) is a compact metric measure space with synthetic negative Ricci curvature in Sturm's sense, then the measure-preserving isometry group Iso(𝘟, 𝘥, 𝑚) is finite. We also give an effective estimate on the order of the measure-preserving isometry group for a compact weighted Riemannian manifold with negative Bakry-Émery Ricci curvature, except for small portions.
dc.description.sponsorshipThe results in this article are mainly part of the author's undergraduate thesis at Tsinghua University. The author would like to express his sincere gratitude to Professor Jinxin Xue, who brought him into this field and gave him expert advice. He would also like to thank Professors Yann Brenier and Francois Bolley for their email of discussion and Professor Tapio Rajala for telling him the articles [17, 28] on the measure-preserving isometry groups of RCD spaces. Finally, he would like to thank the anonymous referees for their useful comments, which led to Theorem 1.7.
dc.identifier.citationThe Measure Preserving Isometry Groups of Metric Measure Spaces. Yifan Guo. SIGMA 16 (2020), 114, 14 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.114
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 53C20; 53C21; 53C23
dc.identifier.otherarXiv:2006.04092
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211006
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleThe Measure Preserving Isometry Groups of Metric Measure Spaces
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
114-Guo.pdf
Розмір:
390.72 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: