Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature

dc.contributor.authorCalvaruso, G.
dc.contributor.authorZaeim, A.
dc.date.accessioned2019-02-15T19:14:31Z
dc.date.available2019-02-15T19:14:31Z
dc.date.issued2016
dc.description.abstractLocally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds.uk_UA
dc.description.sponsorshipFirst author partially supported by funds of the University of Salento and MIUR (PRIN). Second author partially supported by funds of the University of Payame Noor. The authors wish to thank the anonymous referees for their valuable suggestions and comments.uk_UA
dc.identifier.citationSymmetries of Lorentzian Three-Manifolds with Recurrent Curvature / G. Calvaruso, A. Zaeim // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 23 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53C50; 53B30
dc.identifier.otherDOI:10.3842/SIGMA.2016.063
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147760
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSymmetries of Lorentzian Three-Manifolds with Recurrent Curvatureuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
063-Calvaruso.pdf
Розмір:
320.25 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: