Real Liouvillian Extensions of Partial Differential Fields

dc.contributor.authorCrespo, Teresa
dc.contributor.authorHajto, Zbigniew
dc.contributor.authorMohseni, Rouzbeh
dc.date.accessioned2026-01-02T08:31:49Z
dc.date.issued2021
dc.description.abstractIn this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally 𝑝-adic differential fields with a 𝑝-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally 𝑝-adic) Picard-Vessiot extension. Moreover, we obtain a uniqueness result for this Picard-Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities for further development of algebraic methods in real dynamical systems.
dc.description.sponsorshipWe are very thankful to the anonymous referees for their valuable comments, which helped us to improve significantly the presentation of our results. R. Mohseni acknowledges the support of the Polish Ministry of Science and Higher Education. T. Crespo and Z. Hajto acknowledge support of grant PID2019-107297GB-I00 (MICINN).
dc.identifier.citationReal Liouvillian Extensions of Partial Differential Fields. Teresa Crespo, Zbigniew Hajto and Rouzbeh Mohseni. SIGMA 17 (2021), 095, 16 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.095
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 12H05; 37J35; 12D15; 14P05
dc.identifier.otherarXiv:2104.09548
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211432
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleReal Liouvillian Extensions of Partial Differential Fields
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
095-Crespo.pdf
Розмір:
445.49 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: