Quantum K-Theory of Grassmannians and Non-Abelian Localization

dc.contributor.authorGivental, Alexander
dc.contributor.authorYan, Xiaohan
dc.date.accessioned2025-12-25T13:21:10Z
dc.date.issued2021
dc.description.abstractIn the example of complex Grassmannians, we demonstrate various techniques available for computing genus-0 K-theoretic GW-invariants of flag manifolds and more general quiver varieties. In particular, we address explicit reconstruction of all such invariants using finite-difference operators, the role of the 𝑞-hypergeometric series arising in the context of quasimap compactifications of spaces of rational curves in such varieties, the theory of twisted GW-invariants, including level structures, as well as the Jackson-type integrals playing the role of equivariant K-theoretic mirrors.
dc.description.sponsorshipThis material is based upon work supported by the National Science Foundation under Grant DMS-1906326. We are thankful to P. Koroteev and A. Smirnov for their effort in educating us about their work on quantum K-theory of symplectic quiver varieties, and to H. Liu and Y. Wen for sharing and discussing their preprints.
dc.identifier.citationQuantum K-Theory of Grassmannians and Non-Abelian Localization. Alexander Givental and Xiaohan Yan. SIGMA 17 (2021), 018, 24 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.018
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 14N35
dc.identifier.otherarXiv:2008.08182
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211170
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleQuantum K-Theory of Grassmannians and Non-Abelian Localization
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
018-Givental.pdf
Розмір:
545.61 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: