Интегрируемость и устойчивость

dc.contributor.authorКовалёв, А.М.
dc.date.accessioned2017-09-14T17:34:40Z
dc.date.available2017-09-14T17:34:40Z
dc.date.issued2010
dc.description.abstractВ работе изучается задача выделения устойчивых переменных для нелинейной автономной системы дифференциальных уравнений, допускающей нулевое решение, при известной функции Ляпунова со знакопостоянной производной. С помощью метода дополнительных функций функция Ляпунова преобразована к виду, позволяющему выделить устойчивые переменные и получить интеграл, а также частный интеграл в зависимости от структуры движения. Обсуждена связь этих вопросов с методом связки интегралов Четаева. Рассмотрены движения твердого тела с маховиком и гироскопа Горячева-Чаплыгина. Получены интегралы движений из построенных функций Ляпунова.uk_UA
dc.description.abstractУ роботі вивчається задача виділення стійких змінних для нелінійної автономної системи диференціальних рівнянь, яка допускає нульовий розв'язок, при відомій функції Ляпунова зі знакосталою похідною. За допомогою методу додаткових функцій функцію Ляпунова перетворено до вигляду, який дозволяє виділити стійкі змінні й одержати інтеграл, а також окремий інтеграл залежно від структури руху. Обговорено зв'язок цих питань із методом в'язки інтегралів Четаєва. Розглянуто рухи твердого тіла з маховиком і гіроскопа Горячева-Чаплигіна. Отримано інтеграли рухів із побудованих функцій Ляпунова.uk_UA
dc.description.abstractIn the paper, the problem of the selection of the stable variables is investigated for a nonlinear autonomous system of differential equations, admitting zero solution, with a known Lyapunov function having the derivative of constant sign. With the help of the additional functions method, a Lyapunov function is transformed into the form that allows to select the stable variables and to obtain an integral and also partial integral depending on the motion structure. The connection between these questions and the Chetaev integral bundles method is discussed. The motions of a rigid body with a rotor and the Goryachev–Chaplygin gyroscope are considered. The motion integrals are obtained from the Lyapunov functions constructed.uk_UA
dc.identifier.citationИнтегрируемость и устойчивость / А.М. Ковалёв // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 20. — С. 109-115. — Бібліогр.: 13 назв. — рос.uk_UA
dc.identifier.issn1683-4720
dc.identifier.udc531.36
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/123934
dc.language.isoruuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofТруды Института прикладной математики и механики
dc.statuspublished earlieruk_UA
dc.titleИнтегрируемость и устойчивостьuk_UA
dc.title.alternativeІнтегровність і стійкістьuk_UA
dc.title.alternativeIntegrability and stabilityuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
14-Kovalev.pdf
Розмір:
690.57 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: