Twisted-Austere Submanifolds in Euclidean Space

dc.contributor.authorIvey, Thomas A.
dc.contributor.authorKarigiannis, Spiro
dc.date.accessioned2025-12-25T13:20:08Z
dc.date.issued2021
dc.description.abstractA twisted-austere 𝑘-fold (𝑀, 𝜇) in ℝⁿ consists of a 𝑘-dimensional submanifold 𝑀 of ℝⁿ together with a closed 1-form 𝜇 on 𝑀, such that the second fundamental form A of 𝑀 and the 1-form 𝜇 satisfy a particular system of coupled nonlinear second-order PDE. Given such an object, the ''twisted conormal bundle'' 𝑁*𝑀+𝜇 is a special Lagrangian submanifold of ℂⁿ. We review the twisted austere condition and give an explicit example. Then we focus on twisted austere 3-folds. We give a geometric description of all solutions when the ''base'' 𝑀 is a cylinder, and when 𝑀 is austere. Finally, we prove that, other than the case of a generalized helicoid in ℝ⁵ discovered by Bryant, there are no other possibilities for the base 𝑀. This gives a complete classification of twisted-austere 3-folds in Rⁿ.
dc.description.sponsorshipThe authors thank the anonymous referees for useful feedback and comments that improved the quality of the paper.
dc.identifier.citationTwisted-Austere Submanifolds in Euclidean Space. Thomas A. Ivey and Spiro Karigiannis. SIGMA 17 (2021), 023, 31 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2021.023
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 53B25; 53C38; 53C40; 53D12; 58A15
dc.identifier.otherarXiv:2006.15119
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/211165
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleTwisted-Austere Submanifolds in Euclidean Space
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
023-Ivey.pdf
Розмір:
563.1 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: