О неравенствах для норм промежуточных производных на конечном интервале

dc.contributor.authorБабенко, В.Ф.
dc.contributor.authorКофанов, С.А.
dc.contributor.authorПичугов, С.А.
dc.date.accessioned2019-06-19T11:44:44Z
dc.date.available2019-06-19T11:44:44Z
dc.date.issued1995
dc.description.abstractFor functionsf which have an absolute continuous (n−1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality ‖‖f(n−2)‖‖∞⩽4n−2(n−1)!‖f‖∞+‖‖f(n)‖‖∞/2 holds with the exact constant 4 n−2(n−1)!.uk_UA
dc.identifier.citationО неравенствах для норм промежуточных производных на конечном интервале / В.Ф. Бабенко, С.А. Кофанов, С.А. Пичугов // Український математичний журнал. — 1995. — Т. 47, № 1. — С. 105–107. — Бібліогр.: 4 назв. — рос.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517.5
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/156962
dc.language.isoruuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectКороткі повідомленняuk_UA
dc.titleО неравенствах для норм промежуточных производных на конечном интервалеuk_UA
dc.title.alternativeOn inequalities for norms of intermediate derivatives on a finite intervaluk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
13-Babenko.pdf
Розмір:
653.41 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: