On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs
| dc.contributor.author | Inpoonjai, P. | |
| dc.contributor.author | Jiarasuksakun, T. | |
| dc.date.accessioned | 2023-03-02T15:26:44Z | |
| dc.date.available | 2023-03-02T15:26:44Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist. | uk_UA |
| dc.description.sponsorship | The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper. | uk_UA |
| dc.identifier.citation | On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ. | uk_UA |
| dc.identifier.issn | 1726-3255 | |
| dc.identifier.other | 2010 MSC: Primary 05C78; Secondary 05B15. | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188480 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
| dc.relation.ispartof | Algebra and Discrete Mathematics | |
| dc.status | published earlier | uk_UA |
| dc.title | On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 08-Inpoonjai.pdf
- Розмір:
- 668.82 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: