On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs

dc.contributor.authorInpoonjai, P.
dc.contributor.authorJiarasuksakun, T.
dc.date.accessioned2023-03-02T15:26:44Z
dc.date.available2023-03-02T15:26:44Z
dc.date.issued2019
dc.description.abstractMagic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist.uk_UA
dc.description.sponsorshipThe authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.uk_UA
dc.identifier.citationOn the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs / P. Inpoonjai, T. Jiarasuksakun // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 1. — С. 107–122. — Бібліогр.: 15 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC: Primary 05C78; Secondary 05B15.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188480
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
08-Inpoonjai.pdf
Розмір:
668.82 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: