A Combinatorial Study on Quiver Varieties

dc.contributor.authorFujii, S.
dc.contributor.authorMinabe, S.
dc.date.accessioned2019-02-18T16:15:12Z
dc.date.available2019-02-18T16:15:12Z
dc.date.issued2017
dc.description.abstractThis is an expository paper which has two parts. In the first part, we study quiver varieties of affine A-type from a combinatorial point of view. We present a combinatorial method for obtaining a closed formula for the generating function of Poincaré polynomials of quiver varieties in rank 1 cases. Our main tools are cores and quotients of Young diagrams. In the second part, we give a brief survey of instanton counting in physics, where quiver varieties appear as moduli spaces of instantons, focusing on its combinatorial aspects.uk_UA
dc.description.sponsorshipThe authors would like to thank H. Awata, H. Miyachi, W. Nakai, H. Nakajima, T. Nakatsu, M. Namba, Y. Nohara, Y. Hashimoto, Y. Ito, T. Sasaki, Y. Tachikawa, K. Takasaki, and K. Ueda for valuable discussions and comments. The authors express their deep gratitudes to M. Hamanaka, S. Moriyama, and A. Tsuchiya for their advices and warm encouragements, and especially to H. Kanno for suggesting a problem and reading the manuscript carefully. This work was started while the authors enjoyed the hospitality of the Fields Institute at University of Toronto on the fall of 2004. The authors are grateful to K. Hori for invitation. Throughout this work, the authors’ research was supported in part by COE program in mathematics at Nagoya University. Added in 2017. The authors thank the referees for useful comments. During the revision in 2017, S.M. is supported in part by Grant for Basic Science Research Projects from the Sumitomo Foundation and JSPS KAKENHI Grand number JP17K05228.uk_UA
dc.identifier.citationA Combinatorial Study on Quiver Varieties / S. Fujii, S. Minabe // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 58 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14C05; 14D21; 05A19; 05E10
dc.identifier.otherDOI:10.3842/SIGMA.2017.052
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148584
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Combinatorial Study on Quiver Varietiesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
052-Fujii.pdf
Розмір:
611.39 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: