Elliptic Hypergeometric Solutions to Elliptic Difference Equations

dc.contributor.authorMagnus, A.P.
dc.date.accessioned2019-02-19T17:55:43Z
dc.date.available2019-02-19T17:55:43Z
dc.date.issued2009
dc.description.abstractIt is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). Many thanks to the organizers of the workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (Hausdorf f Center for Mathematics, Bonn, July 2008), to A. Aptekarev, B. Beckermann, A.C. Matos, F. Wielonsky, of the Laboratoire Paul Painlev´e UMR 8524, Universit´e de Lille 1, France, who organized their 3`emes Journ´ees Approximation on May 15–16, 2008. Many thanks too to R. Askey, L. Haine, M. Ismail, F. Nijhof f, A. Ronveaux, and, of course, V. Spiridonov and A. Zhedanov for their preprints, interest, remarks, and kind words. Many thanks to the referees for expert and careful reading, and kind words too. This paper presents research results of the Belgian Programme on Interuniversity Attraction Poles, initiated by the Belgian Federal Science Policy Office.uk_UA
dc.identifier.citationElliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 39A70; 41A20
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149168
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleElliptic Hypergeometric Solutions to Elliptic Difference Equationsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
38-Magnus.pdf
Розмір:
270.53 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: