On the Automorphisms of a Rank One Deligne-Hitchin Moduli Space

dc.contributor.authorBiswas, I.
dc.contributor.authorHeller, S.
dc.date.accessioned2019-02-18T18:50:13Z
dc.date.available2019-02-18T18:50:13Z
dc.date.issued2017
dc.description.abstractLet X be a compact connected Riemann surface of genus g≥2, and let MDH be the rank one Deligne-Hitchin moduli space associated to X. It is known that MDH is the twistor space for the hyper-Kähler structure on the moduli space of rank one holomorphic connections on X. We investigate the group Aut(MDH) of all holomorphic automorphisms of MDH. The connected component of Aut(MDH) containing the identity automorphism is computed. There is a natural element of H²(MDH,Z). We also compute the subgroup of Aut(MDH) that fixes this second cohomology class. Since MDH admits an ample rational curve, the notion of algebraic dimension extends to it by a theorem of Verbitsky. We prove that MDH is Moishezon.uk_UA
dc.description.sponsorshipWe thank the referees for their detailed and helpful comments. The work begun during a research stay of the second author at the Tata Institute of Fundamental Research and he would like to thank the institute for its hospitality. SH is partially supported by DFG HE 6818/1-2. The first author is partially supported by a J.C. Bose Fellowship.uk_UA
dc.identifier.citationOn the Automorphisms of a Rank One Deligne-Hitchin Moduli Space / I. Biswas, S. Heller // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14D20; 14J50; 14H60
dc.identifier.otherDOI:10.3842/SIGMA.2017.072
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148776
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleOn the Automorphisms of a Rank One Deligne-Hitchin Moduli Spaceuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
072-Biswas.pdf
Розмір:
407.78 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: