A System of Multivariable Krawtchouk Polynomials and a Probabilistic Application

dc.contributor.authorGrünbaum, F.A.
dc.contributor.authorRahman, M.
dc.date.accessioned2019-02-16T20:47:44Z
dc.date.available2019-02-16T20:47:44Z
dc.date.issued2011
dc.description.abstractThe one variable Krawtchouk polynomials, a special case of the ₂F₁ function did appear in the spectral representation of the transition kernel for a Markov chain studied a long time ago by M. Hoare and M. Rahman. A multivariable extension of this Markov chain was considered in a later paper by these authors where a certain two variable extension of the F₁ Appel function shows up in the spectral analysis of the corresponding transition kernel. Independently of any probabilistic consideration a certain multivariable version of the Gelfand-Aomoto hypergeometric function was considered in papers by H. Mizukawa and H. Tanaka. These authors and others such as P. Iliev and P. Tertwilliger treat the two-dimensional version of the Hoare-Rahman work from a Lie-theoretic point of view. P. Iliev then treats the general n-dimensional case. All of these authors proved several properties of these functions. Here we show that these functions play a crucial role in the spectral analysis of the transition kernel that comes from pushing the work of Hoare-Rahman to the multivariable case. The methods employed here to prove this as well as several properties of these functions are completely different to those used by the authors mentioned above.uk_UA
dc.description.sponsorshipThe research of the first author was supported in part by the Applied Math. Sciences subprogram of the Of fice of Energy Research, USDOE, under Contract DE-AC03-76SF00098.uk_UA
dc.identifier.citationA System of Multivariable Krawtchouk Polynomials and a Probabilistic Application / F.A. Grünbaum, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 33C45; 22E46; 33C45; 60J35; 60J05
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2011.119
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/148084
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA System of Multivariable Krawtchouk Polynomials and a Probabilistic Applicationuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
119-Grünbaum.pdf
Розмір:
387.62 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: