Теорема Скитовича - Дармуа для конечных абелевых групп

dc.contributor.authorМазур, И.П.
dc.date.accessioned2020-02-19T05:40:40Z
dc.date.available2020-02-19T05:40:40Z
dc.date.issued2011
dc.description.abstractНехай X — скiнченна абелева група, ξi,i=1,2,...,n,n≥2, — незалежнi випадковi величини зi значеннями в X i розподiлами μi,αij,i,j=1,2,...,n, — автоморфiзми X. Доведено, що iз незалежностi n лiнiйних форм Lj=∑ni=1αijξi випливає, що всi μi — зрушення розподiлiв Хаара деякої пiдгрупи групи X. Ця теорема є аналогом теореми Скiтовича – Дармуа для скiнченних абелевих груп.uk_UA
dc.description.abstractLet X be a finite Abelian group, let ξi,i=1,2,...,n,n≥2, be independent random variables with values in X and distributions μi, and let αij,i,j=1,2,...,n, be automorphisms of X. We prove that the independence of n linear forms Lj=∑ni=1αijξi implies that all μi are shifts of the Haar distributions on some subgroups of the group X. This theorem is an analog of the Skitovich – Darmois theorem for finite Abelian groupsuk_UA
dc.identifier.citationТеорема Скитовича - Дармуа для конечных абелевых группе / И.П. Мазур // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1524–1533. — Бібліогр.: 16 назв. — рос.uk_UA
dc.identifier.issn1027-3190
dc.identifier.udc517
dc.identifier.udc519.2
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/166399
dc.language.isoruuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofУкраїнський математичний журнал
dc.statuspublished earlieruk_UA
dc.subjectСтаттіuk_UA
dc.titleТеорема Скитовича - Дармуа для конечных абелевых группuk_UA
dc.title.alternativeSkitovich-Darmois theorem for finite Abelian groupsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
05-Mazur.pdf
Розмір:
294.58 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: