Нейронні та мережі Байєса у задачі аналізу кредитних ризиків

dc.contributor.authorКузнєцова, Н.В.
dc.contributor.authorБідюк, П.І.
dc.date.accessioned2018-03-24T17:40:14Z
dc.date.available2018-03-24T17:40:14Z
dc.date.issued2015
dc.description.abstractРобота присвячена аналізу дефолтів позичальників кредиту фінансової установи з використанням трьох типів математичних моделей і фактичних даних з банківської установи. Представлено результати побудови та практичного застосування моделей у формі нейронної мережі зворотного розповсюдження, статичної байєсівської мережі та інтегрованої моделі, яка складається з двох указаних структур. Виконано ряд обчислювальних експериментів стосовно прогнозування дефолтів позичальників кредитів з використанням кожноїпобудованої моделі окремо, а також комбінованої (інтегрованої) моделі. Показано, що кращий результат на використаних вибірках даних забезпечує комбінована модель, і встановлено, що для розв’язання задачі прогнозування дефолтів клієнтів банку доцільно застосовувати множину різних моделей, інтегроване використання яких дає можливість підвищити якість оцінок прогнозів.uk_UA
dc.description.abstractРабота посвящена анализу дефолтов заемщиков финансового учреждения с использованием трех типов математических моделей и фактических данных из банковского учреждения. Представлены результаты построения и практического использования моделей в форме нейронной сети обратного распространения, статичной сети Байеса и интегрированной модели, которая состоит из двух указанных структур. Выполнен ряд вычислительных экспериментов по прогнозированию дефолтов заемщиков кредитов с использованием каждой построенной модели отдельно, а также комбинированной (интегрированной) модели. Показано, что лучший результат на использованных выборках данных обеспечивает комбинированная модель и установлено, что для решения задачи прогнозирования дефолта клиентов банку целесообразно использовать множество разных моделей, интегрированное использование которых дает возможность улучшить качество оценок прогнозов.uk_UA
dc.description.abstractThe research touches upon analysis of defaults for credit borrowers of financial institution using three types of mathematical models and actual statistical data from a bank. The results of the three models constructing in the form of back propagation neural net, static Bayesian network and their combination are given. A series of computing experiments were performed to estimate defaults among credit borrowers using each model separately and their combined (integrated) version. It is shown that the best forecasting result on the samples studied provides combined model and it was established that solving the problem of default forecasting for a bank clients requires application of several different models an integrated usage of which provides a possibility for reaching better final results of forecasting.uk_UA
dc.identifier.citationНейронні та мережі Байєса у задачі аналізу кредитних ризиків / Н.В. Кузнєцова, П.І. Бідюк // Реєстрація, зберігання і обробка даних. — 2015. — Т. 17, № 2. — С. 61-71. — Бібліогр.: 10 назв. — укр.uk_UA
dc.identifier.issn1560-9189
dc.identifier.udc004.9:519.226
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/131568
dc.language.isoukuk_UA
dc.publisherІнститут проблем реєстрації інформації НАН Україниuk_UA
dc.relation.ispartofРеєстрація, зберігання і обробка даних
dc.statuspublished earlieruk_UA
dc.subjectЕкспертні системи та підтримка прийняття рішеньuk_UA
dc.titleНейронні та мережі Байєса у задачі аналізу кредитних ризиківuk_UA
dc.title.alternativeНейронные и сети Байеса в задачах анализа кредитных рисковuk_UA
dc.title.alternativeNeural and Bayesian networks in the problem of credit risk analysisuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
07-Kuznietsova.pdf
Розмір:
343.51 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: