Modules in which every surjective endomorphism has a δ-small kernel
dc.contributor.author | Ebrahimi Atani, S. | |
dc.contributor.author | Khoramdel, M. | |
dc.contributor.author | Dolati Pishhesari, S. | |
dc.date.accessioned | 2023-02-27T15:51:56Z | |
dc.date.available | 2023-02-27T15:51:56Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this paper,we introduce the notion of δ-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ-Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ-Hopfian. Also, we show that for a ring R, δ(R) = J(R) if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ-Hopfian property is a Morita invariant. Further, the δ-Hopficity of modules over truncated polynomial and triangular matrix rings are considered. | uk_UA |
dc.description.sponsorship | The authors express their deep gratitude to the referee for her/his helpful suggestions for the improvement of this work. | uk_UA |
dc.identifier.citation | Modules in which every surjective endomorphism has a δ-small kernel / S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pishhesari // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 170–189. — Бібліогр.: 18 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2010 MSC: 16D10, 16D40, 16D90. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/188409 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Modules in which every surjective endomorphism has a δ-small kernel | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: