Modules in which every surjective endomorphism has a δ-small kernel

dc.contributor.authorEbrahimi Atani, S.
dc.contributor.authorKhoramdel, M.
dc.contributor.authorDolati Pishhesari, S.
dc.date.accessioned2023-02-27T15:51:56Z
dc.date.available2023-02-27T15:51:56Z
dc.date.issued2018
dc.description.abstractIn this paper,we introduce the notion of δ-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of δ-Hopfian modules by proving that a ring R is semisimple if and only if every R-module is δ-Hopfian. Also, we show that for a ring R, δ(R) = J(R) if and only if for all R-modules, the conditions δ-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that δ-Hopfian property is a Morita invariant. Further, the δ-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.uk_UA
dc.description.sponsorshipThe authors express their deep gratitude to the referee for her/his helpful suggestions for the improvement of this work.uk_UA
dc.identifier.citationModules in which every surjective endomorphism has a δ-small kernel / S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pishhesari // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 2. — С. 170–189. — Бібліогр.: 18 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC: 16D10, 16D40, 16D90.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188409
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleModules in which every surjective endomorphism has a δ-small kerneluk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
02-Atani.pdf
Розмір:
418.59 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: