Are Orthogonal Separable Coordinates Really Classified?

dc.contributor.authorSchöbel, K.
dc.date.accessioned2019-02-15T18:59:16Z
dc.date.available2019-02-15T18:59:16Z
dc.date.issued2016
dc.description.abstractWe prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal separable coordinates by studying the structure of this variety. We give an example where this approach reveals unexpected structure in the well known classification and pose a number of problems arising naturally in this context.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. This notice is based on a talk held at the workshop “Analytical Mechanics and Dif ferential Geometry” at the Universit`a di Torino on 12th and 13th March 2015 on the occasion of Sergio Benenti’s 70th birthday. The author would like to thank the organisers, Claudia Chanu and Giovanni Rastelli, for their kind invitation and hospitality, as well as Willard Miller for valuable discussions on the subject.uk_UA
dc.identifier.citationAre Orthogonal Separable Coordinates Really Classified? / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 36 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 14H70; 53A60; 58D27
dc.identifier.otherDOI:10.3842/SIGMA.2016.041
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147741
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleAre Orthogonal Separable Coordinates Really Classified?uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
041-Schöbel.pdf
Розмір:
1.1 MB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: