Planar trees, free nonassociative algebras, invariants, and elliptic integrals

dc.contributor.authorDrensky, V.
dc.contributor.authorHoltkamp, R.
dc.date.accessioned2019-06-10T18:55:59Z
dc.date.available2019-06-10T18:55:59Z
dc.date.issued2008
dc.description.abstractWe consider absolutely free algebras with (maybe infinitely) many multilinear operations. Such multioperator algebras were introduced by Kurosh in 1960. Multioperator algebras satisfy the Nielsen-Schreier property and subalgebras of free algebras are also free. Free multioperator algebras are described in terms of labeled reduced planar rooted trees. This allows to apply combinatorial techniques to study their Hilbert series and the asymptotics of their coefficients. Then, over a field of characteristic 0, we investigate the subalgebras of invariants under the action of a linear group, their sets of free generators and their Hilbert series. It has turned out that, except in the trivial cases, the algebra of elliptic integrals. invariants is never finitely generated. In important partial cases the Hilbert series of the algebras of invariants and the generating functions of their sets of free generators are expressed in terms of elliptic integrals.uk_UA
dc.description.sponsorshipThe work of the first author was partially supported by Grant MI-1503/2005 ofthe Bulgarian National Science Fund.uk_UA
dc.identifier.citationPlanar trees, free nonassociative algebras, invariants, and elliptic integrals / V. Drensky, R. Holtkamp // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 2. — С. 1–41. — Бібліогр.: 48 назв. — англuk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:17A50, 17A36, 17A42, 15A72,33E05.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/152390
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titlePlanar trees, free nonassociative algebras, invariants, and elliptic integralsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Drensky.pdf
Розмір:
370.73 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: