Constructing Involutive Tableaux with Guillemin Normal Form
dc.contributor.author | Smith, A.D. | |
dc.date.accessioned | 2019-02-13T17:02:07Z | |
dc.date.available | 2019-02-13T17:02:07Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Involutivity is the algebraic property that guarantees solutions to an analytic and torsion-free exterior differential system or partial differential equation via the Cartan-Kähler theorem. Guillemin normal form establishes that the prolonged symbol of an involutive system admits a commutativity property on certain subspaces of the prolonged tableau. This article examines Guillemin normal form in detail, aiming at a more systematic approach to classifying involutive systems. The main result is an explicit quadratic condition for involutivity of the type suggested but not completed in Chapter IV, § 5 of the book Exterior Differential Systems by Bryant, Chern, Gardner, Goldschmidt, and Griffiths. This condition enhances Guillemin normal form and characterizes involutive tableaux. | uk_UA |
dc.description.sponsorship | Thanks to Deane Yang for several helpful conversations. Thanks also to the anonymous referees, whose suggestions improved the style and focus of this article significantly. | uk_UA |
dc.identifier.citation | Constructing Involutive Tableaux with Guillemin Normal Form / A.D. Smith // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 9 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 58A15; 58H10 | |
dc.identifier.other | DOI:10.3842/SIGMA.2015.053 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147123 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Constructing Involutive Tableaux with Guillemin Normal Form | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 053-Smith.pdf
- Розмір:
- 413.12 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: