Witt equivalence of function fields of conics

dc.contributor.authorGladki, P.
dc.contributor.authorMarshall, M.
dc.date.accessioned2023-03-05T17:25:07Z
dc.date.available2023-03-05T17:25:07Z
dc.date.issued2020
dc.description.abstractTwo fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.uk_UA
dc.identifier.citationWitt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.otherDOI:10.12958/adm1271
dc.identifier.other2000 MSC: Primary 11E81, 12J20; Secondary 11E04, 11E12
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/188553
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleWitt equivalence of function fields of conicsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Gladki.pdf
Розмір:
415 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: