Boundaries of Graphs of Harmonic Functions
dc.contributor.author | Fox, D. | |
dc.date.accessioned | 2019-02-19T17:36:22Z | |
dc.date.available | 2019-02-19T17:36:22Z | |
dc.date.issued | 2009 | |
dc.description.abstract | Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary g(Sn–1). The proof uses standard linear elliptic theory to produce an integral manifold G: Dn → M and the completeness of the space of conservation laws to show that this candidate has g(Sn–1) as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in Cm in the local case. | uk_UA |
dc.description.sponsorship | This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. | uk_UA |
dc.identifier.citation | Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2000 Mathematics Subject Classification: 35J05; 35J25; 53B25 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149134 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | Boundaries of Graphs of Harmonic Functions | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 68-Fox.pdf
- Розмір:
- 196.96 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: