Quiver Varieties and Branching

dc.contributor.authorNakajima, H.
dc.date.accessioned2019-02-19T19:29:30Z
dc.date.available2019-02-19T19:29:30Z
dc.date.issued2009
dc.description.abstractBraverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac-Moody group Gaff [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of representations of the Langlands dual group GaffÚ at level r. When G = SL(l), the Uhlenbeck compactification is the quiver variety of type sl(r)aff, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for G = SL(l).uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. This work is supported by the Grant-in-aid for Scientific Research (No.19340006), JSPS. This work was started while the author was visiting the Institute for Advanced Study with supports by the Ministry of Education, Japan and the Friends of the Institute. The author would like to thank to A. Braverman and M. Finkelberg for discussion on the subject, and to the referees for their careful readings and comments.uk_UA
dc.identifier.citationQuiver Varieties and Branching / H. Nakajima // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 17B65; 14D21
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149260
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleQuiver Varieties and Branchinguk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Nakajima.pdf
Розмір:
563.38 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: