Поверхностные волны на воде при наличии неоднородностей

dc.contributor.authorСелезов, И.Т.
dc.contributor.authorРябенко, А.А.
dc.date.accessioned2017-04-24T20:21:03Z
dc.date.available2017-04-24T20:21:03Z
dc.date.issued2012
dc.description.abstractПредставлены три типа эволюционных уравнений, описывающих распространение уединенных волн в жидкости конечной глубины. Уравнения обобщают известные ранее результаты на случаи переменной глубины, подвижной донной поверхности и генерации волн в течении при наличии локальной неоднородности. Вывод уравнений основан на применении асимптотического анализа, характеризуемого большим объемом работы. Обсуждаются некоторые эффекты, предсказываемые приведенными моделями. Показано расширение области применимости первой модели путем сравнения с известными экспериментальными и численными результатами. Вторая модель характеризует влияние упругого подвижного дна на распространение волн. Третья модель приводит к нагруженному уравнению Кортевега - де Вриза и обнаруживает быструю и медленную волновые моды при течении жидкости над локальной неоднородностью в двухслойной жидкости.uk_UA
dc.description.abstractПредставлені три типи еволюційних рівнянь, які описують розповсюдження відокремлених хвиль у рідині кінцевої глибини. Рівняння узагальнюють раніше відомі результати на випадки змінної глибини, рухливої донної поверхні та генерації хвиль у потоці при наявності локальної неоднорідності. Вивід рівнянь заснований на застосуванні асимптотичного аналізу,що характеризується великим обсягом роботи.Обговорюються деякі ефекти, що були прогнозовані наведеними моделями. Показано розширення області застосовності першої моделі порівнянням з відомими експериментальними і чисельними результатами. Друга модель характеризує вплив пружного рухливого дна на розповсюдження хвиль. Третя модель приводить до навантаженого рівнянню Кортевега - де Вріза та виявляє швидку та повільну хвильові моди при потоці рідини над локальною неоднорідністю у двошаровій рідині.uk_UA
dc.description.abstractThree types of evolution equations describing solitary waves in the finite depth fluid are presented. The equations generalize earlier known results to cases of variable depth, exciting bottom surface and wave generation in flow in the presence of a local inhomogeneity. Derivation of equations is based on application of asymptotic analysis characterizing big work. Some effects predicted presented models are discussed. Extension of field application the first model is shown by comparison with known experimental and numerical results. The second model characterizes the effect of excitable elastic bottom on wave propagation. The third model leads to the forced Korteweg-de Vries equation and discovers the fast and slow wave modes at fluid flow over a local inhomogeneity in two-layer fluid.uk_UA
dc.identifier.citationПоверхностные волны на воде при наличии неоднородностей / И.Т. Селезов, А.А. Рябенко // Прикладна гідромеханіка. — 2012. — Т. 14, № 1. — С. 72-77. — Бібліогр.: 28 назв. — рос.uk_UA
dc.identifier.issn1561-9087
dc.identifier.udc532.59
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/116342
dc.language.isoruuk_UA
dc.publisherІнститут гідромеханіки НАН Україниuk_UA
dc.relation.ispartofПрикладна гідромеханіка
dc.statuspublished earlieruk_UA
dc.subjectНауковi статтiuk_UA
dc.titleПоверхностные волны на воде при наличии неоднородностейuk_UA
dc.title.alternativeПоверхневі хвилі на воді при наявності неоднорідностейuk_UA
dc.title.alternativeWater waves at the persence of inhomogeneitiesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
06-Selezov.pdf
Розмір:
198.67 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: