New optimized algorithms for molecular dynamics simulations

dc.contributor.authorOmelyan, I.P.
dc.contributor.authorMryglod, I.M.
dc.contributor.authorFolk, R.
dc.date.accessioned2017-06-12T16:13:00Z
dc.date.available2017-06-12T16:13:00Z
dc.date.issued2002
dc.description.abstractThe method of molecular dynamics (MD) is a powerful tool for the prediction and investigation of various phenomena in physics, chemistry and biology. The development of efficient MD algorithms for integration of the equations of motion in classical and quantum many-body systems should therefore impact a lot of fields of fundamental research. In the present study it is shown that most of the existing MD integrators are far from being ideal and further significant improvement in the efficiency of the calculations can be reached. As a result, we propose new optimized algorithms which allow to reduce the numerical uncertainties to a minimum with the same overall computational costs. The optimization is performed within the well recognized decomposition approach and concerns the widely used symplectic Verlet-, Forest-Ruth-, Suzuki- as well as force-gradient-based schemes. It is concluded that the efficiency of the new algorithms can be achieved better with respect to the original integrators in factors from 3 to 1000 for orders from 2 to 12. This conclusion is confirmed in our MD simulations of a Lennard-Jones fluid for a particular case of second- and fourth-order integration schemes.uk_UA
dc.description.abstractМетод молекулярної динаміки (МД) є потужним знаряддям для передбачення і вивчення різноманітних явищ у фізиці, хімії та біології. Побудова ефективних МД алгоритмів для інтегрування рівнянь руху в класичних і квантових багаточастинкових системах повинна, отже, істотно вплинути на розвиток багатьох областей фундаментальних досліджень. У даному розгляді показано, що більшість існуючих МД інтеграторів далекі від ідеальних, і може бути досягнуто подальше значне покращення ефективності обчислень. Як результат, ми пропонуємо нові оптимізовані алгоритми, які дозволяють зменшити чисельні похибки до мінімуму при тих самих загальних обчислювальних затратах. Оптимізація здійснюється у рамках загально визнаного де- композиційного підходу і стосується широко застосовуваних симп- лектичнихсхем Верле, Фореста-Рутха, Сузукі, а також схем, які базуються на обчисленні градієнтів сил. Ми приходимо до висновку, що ефективність нових алгоритмів може бути кращою порівняно з оригінальними інтеграторами від 3 до 1000 разів для порядків від 2 до 12. Цей висновок підтверджується у наших МД симуляціях Леннард- Джонсівської рідини для випадку схем інтегрування другого і четвертого порядку точності.uk_UA
dc.identifier.citationNew optimized algorithms for molecular dynamics simulations / I.P. Omelyan, I.M. Mryglod, R. Folk // Condensed Matter Physics. — 2002. — Т. 5, № 3(31). — С. 369-390. — Бібліогр.: 37 назв. — англ.uk_UA
dc.identifier.issn1607-324X
dc.identifier.otherPACS: 02.60.Cb, 02.70. Ns, 05.10.-а, 95.10. Се, 95.75. Pq
dc.identifier.otherDOI:10.5488/CMP.5.3.369
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/120663
dc.language.isoenuk_UA
dc.publisherІнститут фізики конденсованих систем НАН Україниuk_UA
dc.relation.ispartofCondensed Matter Physics
dc.statuspublished earlieruk_UA
dc.titleNew optimized algorithms for molecular dynamics simulationsuk_UA
dc.title.alternativeНові оптимізовані алгоритми для моделювання методом молекулярної динамікиuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Omelyan.pdf
Розмір:
543.4 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: