Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO

dc.contributor.authorYang Kai
dc.contributor.authorZhijun He
dc.date.accessioned2017-06-14T09:43:36Z
dc.date.available2017-06-14T09:43:36Z
dc.date.issued2016
dc.description.abstractThis paper combine the improved PSO algorithm (Analysis of Particle Swarm Optimization Algorithm) with the BP neural network for prediction of Silicon content in hot metal. Firstly, the varying visual mechanism is drawing into the standard PSO through changing the neighbor structure dynamically with each particles, in order to enhance the local and global searching ability in particle swarm. Afterwards, the improved algorithm is used to optimize the weights and threshold of BP neural network to avoid falling into local extremum. Finally, the prediction model of Si content in hot metal is built based on BP network optimized by Variable neighborhood PSO. The average relative error of the prediction model is 6.7% based on the data from blast furnace.uk_UA
dc.identifier.citationTarget prediction in blast furnace based on BP network optimized by variable neighborhood PSO / Yang Kai, Zhijun He // Functional Materials. — 2016. — Т. 23, № 3. — С. 463-467. — Бібліогр.: 8 назв. — англ.uk_UA
dc.identifier.issn1027-5495
dc.identifier.otherDOI: dx.doi.org/10.15407/fm23.03.463
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/121413
dc.language.isoenuk_UA
dc.publisherНТК «Інститут монокристалів» НАН Україниuk_UA
dc.relation.ispartofFunctional Materials
dc.statuspublished earlieruk_UA
dc.subjectModeling and simulationuk_UA
dc.titleTarget prediction in blast furnace based on BP network optimized by variable neighborhood PSOuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
19-Yang Kai.pdf
Розмір:
545.77 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: