Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics

dc.contributor.authorHentosh, O.Ye.
dc.contributor.authorPrykarpatsky, Ya.A.
dc.contributor.authorBlackmore, D.
dc.contributor.authorPrykarpatski, A.K.
dc.date.accessioned2025-12-05T09:31:54Z
dc.date.issued2019
dc.description.abstractUsing diffeomorphism group vector fields on C-multiplied tori and the related Lie-algebraic structures, we study multi-dimensional dispersionless integrable systems that describe conformal structure generating equations of mathematical physics. An interesting modification of the devised Lie-algebraic approach subject to spatial-dimensional invariance and meromorphicity of the related differential-geometric structures is described and applied in proving complete integrability of some conformal structure generating equations. As examples, we analyze the Einstein-Weyl metric equation, the modified Einstein-Weyl metric equation, the Dunajski heavenly equation system, the first and second conformal structure generating equations, and the inverse first Shabat reduction heavenly equation. We also analyze the modified Plebański heavenly equations, the Husain heavenly equation, and the general Monge equation, along with their multi-dimensional generalizations. In addition, we construct superconformal analogs of the Whitham heavenly equation.
dc.description.sponsorshipThe authors are cordially indebted to Professors Alexander Balinsky, Maxim Pavlov, and Artur Sergyeyev for useful comments and remarks, especially for elucidating references that were very instrumental in preparing this manuscript. They are also indebted to Professor Anatol Odzijewicz for fruitful and instructive discussions during the XXXVII Workshop on Geometric Methods in Physics held on July 1-7, 2018, in Białowieża, Poland. Thanks are also due to the Department of Physics, Mathematics, and Computer Science of the Krakow University of Technology for a local research grant F-2/370/2018/DS. This work was partly funded by the Ukrainian budget program "Support for the development of priority research areas" (CPCEC 6451230). Last but not least, thanks are due to the referees for carefully reading our work, making insightful remarks, and posing questions that were useful in preparing a revised manuscript.
dc.identifier.citationDispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics / O.Ye. Hentosh, Ya.A. Prykarpatsky, D. Blackmore, A.K. Prykarpatski // Symmetry, Integrability and Geometry: Methods and Applications. — 2019. — Т. 15. — Бібліогр.: 30 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2019.079
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 17B68; 17B80; 35Q53; 35G25; 35N10; 37K35; 58J70; 58J72; 34A34; 37K05; 37K10
dc.identifier.otherarXiv: 1902.08111
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210309
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleDispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
079-Hentosh.pdf
Розмір:
423.3 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: