Nijenhuis Integrability for Killing Tensors

dc.contributor.authorSchöbel, K.
dc.date.accessioned2019-02-15T18:42:06Z
dc.date.available2019-02-15T18:42:06Z
dc.date.issued2016
dc.description.abstractThe fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The author would like to acknowledge the anonymous referees for their contribution to improve the paper.uk_UA
dc.identifier.citationNijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 70H06; 53A60; 53B20
dc.identifier.otherDOI:10.3842/SIGMA.2016.024
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147721
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleNijenhuis Integrability for Killing Tensorsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
024-Schöbel.pdf
Розмір:
247.67 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: