Nijenhuis Integrability for Killing Tensors
| dc.contributor.author | Schöbel, K. | |
| dc.date.accessioned | 2019-02-15T18:42:06Z | |
| dc.date.available | 2019-02-15T18:42:06Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | The fundamental tool in the classification of orthogonal coordinate systems in which the Hamilton-Jacobi and other prominent equations can be solved by a separation of variables are second order Killing tensors which satisfy the Nijenhuis integrability conditions. The latter are a system of three non-linear partial differential equations. We give a simple and completely algebraic proof that for a Killing tensor the third and most complicated of these equations is redundant. This considerably simplifies the classification of orthogonal separation coordinates on arbitrary (pseudo-)Riemannian manifolds. | uk_UA |
| dc.description.sponsorship | This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. The author would like to acknowledge the anonymous referees for their contribution to improve the paper. | uk_UA |
| dc.identifier.citation | Nijenhuis Integrability for Killing Tensors / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 10 назв. — англ. | uk_UA |
| dc.identifier.issn | 1815-0659 | |
| dc.identifier.other | 2010 Mathematics Subject Classification: 70H06; 53A60; 53B20 | |
| dc.identifier.other | DOI:10.3842/SIGMA.2016.024 | |
| dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147721 | |
| dc.language.iso | en | uk_UA |
| dc.publisher | Інститут математики НАН України | uk_UA |
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
| dc.status | published earlier | uk_UA |
| dc.title | Nijenhuis Integrability for Killing Tensors | uk_UA |
| dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 024-Schöbel.pdf
- Розмір:
- 247.67 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: