Прогнозирование максимальных условных дисперсий многомерных процессов с разнотемповой дискретизацией на основе адаптивных моделей GARCH

dc.contributor.authorРоманенко, В.Д.
dc.contributor.authorМилявский, Ю.Л.
dc.date.accessioned2013-03-13T17:13:30Z
dc.date.available2013-03-13T17:13:30Z
dc.date.issued2009
dc.description.abstractРассмотрен метод синтеза моделей GARCH для прогнозирования максимальных условных дисперсий многомерных гетероскедаcтических процессов при дискретизации входных возмущений с малыми периодами квантования, а выходных координат — с большими. Динамика процессов в стохастической среде описана матрично-полиномиальными моделями авторегрессии и скользящего среднего с разнотемповой дискретизацией. Адаптивная настройка коэффициентов моделей GARCH выполнена на основе рекуррентного метода наименьших квадратов. Приведены результаты экспериментальных исследований адаптивной настройки и прогнозирования максимальных условных дисперсий при оптимальных коэффициентах.uk_UA
dc.description.abstractРозглянуто метод синтезу моделей GARCH для прогнозування максимальних умовних дисперсій багатовимірних гетероскедастичних процесів при дискретизації вхідних збурень з малими періодами квантування, а вихідних координат — з великими. Динаміку процесів у стохастичному середовищі описано матрично-поліноміальними моделями авторегресії і ковзного середнього з різнотемповою дискретизацією. Розроблено алгоритм адаптивного настроювання коефіцієнтів моделей GARCH. Наведено результати експериментальних досліджень такого настроювання та прогнозування максимальних умовних дисперсій при оптимальних коефіцієнтах.uk_UA
dc.description.abstractA method for synthesis of GARCH models for forecasting maximal conditional dispersions of multidimensional heteroskedastic processes under discretisation of input disturbances with small sampling periods and of output coordinates with large ones is considered. The dynamics of processes in a stochastic medium is described by matrix-polinomial models of autoregression and a sliding mean with multirate discretization. An algorithm for adaptive setting of GARCH models is developed. Experimental results for such a setting as well as forecasting of maximal conditional dispersions under optimal coefficients are presented.uk_UA
dc.identifier.citationПрогнозирование максимальных условных дисперсий многомерных процессов с разнотемповой дискретизацией на основе адаптивных моделей GARCH / В.Д. Романенко, Ю.Л. Милявский // Систем. дослідж. та інформ. технології. — 2009. — № 4. — С. 92–108. — Бібліогр.: 6 назв. — рос.uk_UA
dc.identifier.issn1681–6048
dc.identifier.udc62-50
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/42242
dc.language.isoruuk_UA
dc.publisherНавчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН Україниuk_UA
dc.relation.ispartofСистемні дослідження та інформаційні технології
dc.statuspublished earlieruk_UA
dc.subjectМатематичні методи, моделі, проблеми і технології дослідження складних системuk_UA
dc.titleПрогнозирование максимальных условных дисперсий многомерных процессов с разнотемповой дискретизацией на основе адаптивных моделей GARCHuk_UA
dc.title.alternativeПрогнозування максимальних умовних дисперсій багатовимірних процесів із різнотемповою дискретизацією на основі адаптивних моделей GARCHuk_UA
dc.title.alternativeForecasting of maximal conditional dispersions for multidimensional processes with multirate discretization on the basis of adaptive GARCH modelsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Romanenko.pdf
Розмір:
368.98 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: