Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics

dc.contributor.authorQuesne, C.
dc.date.accessioned2019-02-19T17:31:19Z
dc.date.available2019-02-19T17:31:19Z
dc.date.issued2009
dc.description.abstractNew exactly solvable rationally-extended radial oscillator and Scarf I potentials are generated by using a constructive supersymmetric quantum mechanical method based on a reparametrization of the corresponding conventional superpotential and on the addition of an extra rational contribution expressed in terms of some polynomial g. The cases where g is linear or quadratic are considered. In the former, the extended potentials are strictly isospectral to the conventional ones with reparametrized couplings and are shape invariant. In the latter, there appears a variety of extended potentials, some with the same characteristics as the previous ones and others with an extra bound state below the conventional potential spectrum. Furthermore, the wavefunctions of the extended potentials are constructed. In the linear case, they contain (ν+1)th-degree polynomials with ν = 0,1,2,..., which are shown to be X1-Laguerre or X1-Jacobi exceptional orthogonal polynomials. In the quadratic case, several extensions of these polynomials appear. Among them, two different kinds of (ν+2)th-degree Laguerre-type polynomials and a single one of (ν+2)th-degree Jacobi-type polynomials with ν = 0,1,2,... are identified. They are candidates for the still unknown X2-Laguerre and X2-Jacobi exceptional orthogonal polynomials, respectively.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Proceedings of the Eighth International Conference “Symmetry in Nonlinear Mathematical Physics” (June 21–27, 2009, Kyiv, Ukraine). The author would like to thank B. Bagchi and R. Roychoudhury for some interesting discussions.uk_UA
dc.identifier.citationSolvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics / C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 38 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 33E30; 81Q05; 81Q60
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149120
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSolvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanicsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
84-Quesne.pdf
Розмір:
313.92 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: