The Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type

dc.contributor.authorCafasso, M.,
dc.contributor.authorde la Iglesia, M.D.
dc.date.accessioned2025-11-26T11:34:49Z
dc.date.issued2018
dc.description.abstractConsider the Laguerre polynomials and deform them by the introduction in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx. Theory 162 (2010), 270-297], the authors proved that this deformation can be described by systems of differential/difference equations for the corresponding recursion coefficients and that these equations, ultimately, are equivalent to the Painlevé III equation and its Bäcklund/Schlesinger transformations. Here, we prove that an analogue result holds for some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.
dc.description.sponsorshipM.C. acknowledges the financial support of the Universidad Nacional Autónoma de México (UNAM) and the Unité Mixte International (UMI) “Laboratoire Solomon Lefschetz”, and thanks their staff for the hospitality during his stay in Mexico. We both acknowledge the financial support of the Instituto de Ciencias Matemáticas (ICMAT) for our stay in Madrid during the thematic program “Orthogonal polynomials and special functions in Mathematical Physics and Approximation Theory”, and we are particularly grateful to David Gómez-Ullate for his invitation to participate. Finally, the work of the first author is also supported by the project IPaDEGAN (H2020-MSCA-RISE-2017), grant number 778010 (European Union), and the work of the second one by PAPIIT-DGAPA-UNAM grant IA102617 (Mexico).
dc.identifier.citationThe Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type / M. Cafasso, M.D. de la Iglesia // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 19 назв. — англ.
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2018.076
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 34M56; 35Q15; 37J35; 42C05
dc.identifier.otherarXiv: 1801.08740
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/209774
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleThe Toda and Painlevé Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
076-Cafasso.pdf
Розмір:
429.88 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: