spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²

dc.contributor.authorMellouli, N.
dc.contributor.authorNibirantiza, A.
dc.contributor.authorRadoux, F.
dc.date.accessioned2019-02-21T07:08:09Z
dc.date.available2019-02-21T07:08:09Z
dc.date.issued2013
dc.description.abstractWe consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q.uk_UA
dc.description.sponsorshipIt is a pleasure to thank T. Leuther, P. Mathonet, J.-P. Michel and V. Ovsienko for numerous fruitful discussions and for their interest in our work. We also warmly thank the referees for their suggestions and remarks which considerably improved the paper. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.uk_UA
dc.identifier.citationspo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 53D10; 17B66; 17B10
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2013.055
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149350
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titlespo(2|2)-Equivariant Quantizations on the Supercircle S¹|²uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
055-Mellouli.pdf
Розмір:
474.66 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: