spo(2|2)-Equivariant Quantizations on the Supercircle S¹|²
dc.contributor.author | Mellouli, N. | |
dc.contributor.author | Nibirantiza, A. | |
dc.contributor.author | Radoux, F. | |
dc.date.accessioned | 2019-02-21T07:08:09Z | |
dc.date.available | 2019-02-21T07:08:09Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We consider the space of differential operators Dλμ acting between λ- and μ-densities defined on S¹|² endowed with its standard contact structure. This contact structure allows one to define a filtration on Dλμ which is finer than the classical one, obtained by writting a differential operator in terms of the partial derivatives with respect to the different coordinates. The space Dλμ and the associated graded space of symbols Sδ (δ=μ−λ) can be considered as spo(2|2)-modules, where spo(2|2) is the Lie superalgebra of contact projective vector fields on S¹|². We show in this paper that there is a unique isomorphism of spo(2|2)-modules between Sδ and Dλμ that preserves the principal symbol (i.e. an spo(2|2)-equivariant quantization) for some values of δ called non-critical values. Moreover, we give an explicit formula for this isomorphism, extending in this way the results of [Mellouli N., SIGMA 5 (2009), 111, 11 pages] which were established for second-order differential operators. The method used here to build the spo(2|2)-equivariant quantization is the same as the one used in [Mathonet P., Radoux F., Lett. Math. Phys. 98 (2011), 311-331] to prove the existence of a pgl(p+1|q)-equivariant quantization on Rp|q. | uk_UA |
dc.description.sponsorship | It is a pleasure to thank T. Leuther, P. Mathonet, J.-P. Michel and V. Ovsienko for numerous fruitful discussions and for their interest in our work. We also warmly thank the referees for their suggestions and remarks which considerably improved the paper. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. | uk_UA |
dc.identifier.citation | spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² / N. Mellouli, A. Nibirantiza, F. Radoux // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 27 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 53D10; 17B66; 17B10 | |
dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2013.055 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/149350 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | spo(2|2)-Equivariant Quantizations on the Supercircle S¹|² | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 055-Mellouli.pdf
- Розмір:
- 474.66 KB
- Формат:
- Adobe Portable Document Format
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: