On classification of groups generated by 3-state automata over a 2-letter alphabet

dc.contributor.authorBondarenko, I.
dc.contributor.authorGrigorchuk, R.
dc.contributor.authorKravchenko, R.
dc.contributor.authorMuntyan, Y.
dc.contributor.authorNekrashevych, V.
dc.contributor.authorSavchuk, D.
dc.contributor.authorSunic, Z.
dc.date.accessioned2019-06-10T18:55:07Z
dc.date.available2019-06-10T18:55:07Z
dc.date.issued2008
dc.description.abstractWe show that the class of groups generated by 3-state automata over a 2-letter alphabet has no more than 122 members. For each group in the class we provide some basic information, such as short relators, a few initial values of the growth function, a few initial values of the sizes of the quotients by level stabilizers (congruence quotients), and hystogram of the spectrum of the adjacency operator of the Schreier graph of the action on level 9. In most cases we provide more information, such as whether the group is contracting, self-replicating, or (weakly) branch group, and exhibit elements of infinite order (we show that no group in the class is an infinite torsion group). A GAP package, written by Muntyan and Savchuk, was used to perform some necessary calculations. For some of the examples, we establish that they are (virtually) iterated monodromy groups of post-critically finite rational functions, in which cases we describe the functions and the limit spaces. There are exactly 6 finite groups in the class (of order no greater than 16), two free abelian groups (of rank 1 and 2), and only one free nonabelian group (of rank 3). The other examples in the class range from familiar (some virtually abelian groups, lamplighter group, Baumslag-Solitar groups BS(1±3), and a free product C2 ∗ C2 ∗ C2) to enticing (Basilica group and a few other iterated monodromy groups).uk_UA
dc.description.sponsorshipAll authors were partially supported by at least one of the NSF grants DMS-308985,DMS-456185, DMS-600975, and DMS-605019.uk_UA
dc.identifier.citationOn classification of groups generated by 3-state automata over a 2-letter alphabet / I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan, V. Nekrashevych, D. Savchuk, Z. Sunic // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 1. — С. 1–163. — Бібліогр.: 50 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:20E08.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/152389
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleOn classification of groups generated by 3-state automata over a 2-letter alphabetuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
01-Bondarenko.pdf
Розмір:
1.98 MB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: