Routh Reduction of Palatini Gravity in Vacuum

dc.contributor.authorCapriotti, Santiago
dc.date.accessioned2025-12-15T15:25:03Z
dc.date.issued2020
dc.description.abstractAn interpretation of Einstein-Hilbert gravity equations as a Lagrangian reduction of Palatini gravity is made. The main technique involved in this task consists of representing the equations of motion as a set of differential forms on a suitable bundle. In this setting, Einstein-Hilbert gravity can be considered as a kind of Routh reduction of the underlying field theory for Palatini gravity. As a byproduct of this approach, a novel set of conditions for the existence of a vielbein for a given metric is found.
dc.description.sponsorshipThe author thanks the CONICET and UNS for financial support, and Eduardo Garca-Torano for valuable discussion regarding aspects of Routh reduction contained in this article, as well as for pointing me out to reference [28]. Also, the author would like to warmly thank the referees for the care they put into reviewing this work. The article has been greatly improved by their suggestions.
dc.identifier.citationRouth Reduction of Palatini Gravity in Vacuum. Santiago Capriotti. SIGMA 16 (2020), 046, 50 pages
dc.identifier.doihttps://doi.org/10.3842/SIGMA.2020.046
dc.identifier.issn1815-0659
dc.identifier.other2020 Mathematics Subject Classification: 53C80; 53C05; 83C05; 70S05; 70S10
dc.identifier.otherarXiv:1909.10088
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/210704
dc.language.isoen
dc.publisherІнститут математики НАН України
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlier
dc.titleRouth Reduction of Palatini Gravity in Vacuum
dc.typeArticle

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
046-Capriotti.pdf
Розмір:
613.73 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: