Quantum Analogs of Tensor Product Representations of su(1,1)

dc.contributor.authorGroenevelt, W.
dc.date.accessioned2019-02-14T17:38:28Z
dc.date.available2019-02-14T17:38:28Z
dc.date.issued2011
dc.description.abstractWe study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html.uk_UA
dc.identifier.citationQuantum Analogs of Tensor Product Representations of su(1,1) / W. Groenevelt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 20G42; 33D80
dc.identifier.otherDOI: http://dx.doi.org/10.3842/SIGMA.2011.077
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147402
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleQuantum Analogs of Tensor Product Representations of su(1,1)uk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
077-Groenevelt.pdf
Розмір:
439.17 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: