A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms

dc.contributor.authorMorris, D.W.
dc.date.accessioned2019-02-12T20:33:33Z
dc.date.available2019-02-12T20:33:33Z
dc.date.issued2015
dc.description.abstractA Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple.uk_UA
dc.description.sponsorshipIt is a pleasure to thank V. Chernousov for a very helpful discussion about Tits algebras of special orthogonal groups, A. Rapinchuk for explaining how to prove Lemma 2.5, and the anonymous referees for numerous very insightful comments on a previous version of this manuscript, including some important corrections.uk_UA
dc.identifier.citationA Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms / D.W. Morris // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 12 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2010 Mathematics Subject Classification: 17B10; 17B20; 11E72; 20G30
dc.identifier.otherDOI:10.3842/SIGMA.2015.034
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/147011
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleA Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Formsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
034-Morris.pdf
Розмір:
389.35 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: