A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms
dc.contributor.author | Morris, D.W. | |
dc.date.accessioned | 2019-02-12T20:33:33Z | |
dc.date.available | 2019-02-12T20:33:33Z | |
dc.date.issued | 2015 | |
dc.description.abstract | A Lie algebra gQ over Q is said to be R-universal if every homomorphism from gQ to gl(n,R) is conjugate to a homomorphism into gl(n,Q) (for every n). By using Galois cohomology, we provide a short proof of the known fact that every real semisimple Lie algebra has an R-universal Q-form. We also provide a classification of the R-universal Lie algebras that are semisimple. | uk_UA |
dc.description.sponsorship | It is a pleasure to thank V. Chernousov for a very helpful discussion about Tits algebras of special orthogonal groups, A. Rapinchuk for explaining how to prove Lemma 2.5, and the anonymous referees for numerous very insightful comments on a previous version of this manuscript, including some important corrections. | uk_UA |
dc.identifier.citation | A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms / D.W. Morris // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 12 назв. — англ. | uk_UA |
dc.identifier.issn | 1815-0659 | |
dc.identifier.other | 2010 Mathematics Subject Classification: 17B10; 17B20; 11E72; 20G30 | |
dc.identifier.other | DOI:10.3842/SIGMA.2015.034 | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/147011 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут математики НАН України | uk_UA |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications | |
dc.status | published earlier | uk_UA |
dc.title | A Cohomological Proof that Real Representations of Semisimple Lie Algebras Have Q-Forms | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Завантаження...
- Назва:
- 034-Morris.pdf
- Розмір:
- 389.35 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- Стаття
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: