Weak Frobenius monads and Frobenius bimodules

dc.contributor.authorWisbauer, R.
dc.date.accessioned2019-06-16T14:26:41Z
dc.date.available2019-06-16T14:26:41Z
dc.date.issued2016
dc.description.abstractAs observed by Eilenberg and Moore (1965), for a monad F with right adjoint comonad G on any category A, the category of unital F-modules AF is isomorphic to the category of counital G-comodules AG. The monad F is Frobenius provided we have F=G and then AF≃AF. Here we investigate which kind of isomorphisms can be obtained for non-unital monads and non-counital comonads. For this we observe that the mentioned isomorphism is in fact an isomorphisms between AF and the category of bimodules AFF subject to certain compatibility conditions (Frobenius bimodules). Eventually we obtain that for a weak monad (F,m,η) and a weak comonad (F,δ,ε) satisfying Fm⋅δF=δ⋅m=mF⋅Fδ and m⋅Fη=Fε⋅δ, the category of compatible F-modules is isomorphic to the category of compatible Frobenius bimodules and the category of compatible F-comodules.uk_UA
dc.description.sponsorshipThe author wants to thank Bachuki Mesablishvili for proofreading.uk_UA
dc.identifier.citationWeak Frobenius monads and Frobenius bimodules / R. Wisbauer // Algebra and Discrete Mathematics. — 2016. — Vol. 21, № 2. — С. 287–308. — Бібліогр.: 8 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2010 MSC:18A40, 18C20, 16T1.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/155238
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleWeak Frobenius monads and Frobenius bimodulesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
10-Wisbauer.pdf
Розмір:
395.41 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: