Associated prime ideals of weak σ-rigid rings and their extensions

dc.contributor.authorBhat, V.K.
dc.date.accessioned2019-06-15T16:14:20Z
dc.date.available2019-06-15T16:14:20Z
dc.date.issued2010
dc.description.abstractLet R be a right Noetherian ring which is also an algebra over Q (Q the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. Let further σ be such that aσ(a)∈N(R) implies that a∈N(R) for a∈R, where N(R) is the set of nilpotent elements of R. In this paper we study the associated prime ideals of Ore extension R[x;σ,δ] and we prove the following in this direction: Let R be a semiprime right Noetherian ring which is also an algebra over Q. Let σ and δ be as above. Then P is an associated prime ideal of R[x;σ,δ] (viewed as a right module over itself) if and only if there exists an associated prime ideal U of R with σ(U)=U and δ(U)⊆U and P=U[x;σ,δ]. We also prove that if R be a right Noetherian ring which is also an algebra over Q, σ and δ as usual such that σ(δ(a))=δ(σ(a)) for all a∈R and σ(U)=U for all associated prime ideals U of R (viewed as a right module over itself), then P is an associated prime ideal of R[x;σ,δ] (viewed as a right module over itself) if and only if there exists an associated prime ideal U of R such that (P∩R)[x;σ,δ]=P and P∩R=U.uk_UA
dc.identifier.citationAssociated prime ideals of weak σ-rigid rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 8–17. — Бібліогр.: 15 назв. — англ.uk_UA
dc.identifier.issn1726-3255
dc.identifier.other2000 Mathematics Subject Classification:16-XX; 16N40, 16P40, 16S36.
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/154506
dc.language.isoenuk_UA
dc.publisherІнститут прикладної математики і механіки НАН Україниuk_UA
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.statuspublished earlieruk_UA
dc.titleAssociated prime ideals of weak σ-rigid rings and their extensionsuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
03-Bhat.pdf
Розмір:
158.52 KB
Формат:
Adobe Portable Document Format

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: