Associated prime ideals of weak σ-rigid rings and their extensions
dc.contributor.author | Bhat, V.K. | |
dc.date.accessioned | 2019-06-15T16:14:20Z | |
dc.date.available | 2019-06-15T16:14:20Z | |
dc.date.issued | 2010 | |
dc.description.abstract | Let R be a right Noetherian ring which is also an algebra over Q (Q the field of rational numbers). Let σ be an automorphism of R and δ a σ-derivation of R. Let further σ be such that aσ(a)∈N(R) implies that a∈N(R) for a∈R, where N(R) is the set of nilpotent elements of R. In this paper we study the associated prime ideals of Ore extension R[x;σ,δ] and we prove the following in this direction: Let R be a semiprime right Noetherian ring which is also an algebra over Q. Let σ and δ be as above. Then P is an associated prime ideal of R[x;σ,δ] (viewed as a right module over itself) if and only if there exists an associated prime ideal U of R with σ(U)=U and δ(U)⊆U and P=U[x;σ,δ]. We also prove that if R be a right Noetherian ring which is also an algebra over Q, σ and δ as usual such that σ(δ(a))=δ(σ(a)) for all a∈R and σ(U)=U for all associated prime ideals U of R (viewed as a right module over itself), then P is an associated prime ideal of R[x;σ,δ] (viewed as a right module over itself) if and only if there exists an associated prime ideal U of R such that (P∩R)[x;σ,δ]=P and P∩R=U. | uk_UA |
dc.identifier.citation | Associated prime ideals of weak σ-rigid rings and their extensions / V.K. Bhat // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 1. — С. 8–17. — Бібліогр.: 15 назв. — англ. | uk_UA |
dc.identifier.issn | 1726-3255 | |
dc.identifier.other | 2000 Mathematics Subject Classification:16-XX; 16N40, 16P40, 16S36. | |
dc.identifier.uri | https://nasplib.isofts.kiev.ua/handle/123456789/154506 | |
dc.language.iso | en | uk_UA |
dc.publisher | Інститут прикладної математики і механіки НАН України | uk_UA |
dc.relation.ispartof | Algebra and Discrete Mathematics | |
dc.status | published earlier | uk_UA |
dc.title | Associated prime ideals of weak σ-rigid rings and their extensions | uk_UA |
dc.type | Article | uk_UA |
Файли
Оригінальний контейнер
1 - 1 з 1
Контейнер ліцензії
1 - 1 з 1
Завантаження...
- Назва:
- license.txt
- Розмір:
- 817 B
- Формат:
- Item-specific license agreed upon to submission
- Опис: