Symplectic Applicability of Lagrangian Surfaces

dc.contributor.authorMusso, E.
dc.contributor.authorNicolodi, L.
dc.date.accessioned2019-02-19T17:26:21Z
dc.date.available2019-02-19T17:26:21Z
dc.date.issued2009
dc.description.abstractWe develop an approach to affine symplectic invariant geometry of Lagrangian surfaces by the method of moving frames. The fundamental invariants of elliptic Lagrangian immersions in affine symplectic four-space are derived together with their integrability equations. The invariant setup is applied to discuss the question of symplectic applicability for elliptic Lagrangian immersions. Explicit examples are considered.uk_UA
dc.description.sponsorshipThis paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The work was partially supported by MIUR projects: Metriche riemanniane e variet`a differenziabili (E.M.); Propriet`a geometriche delle variet`a reali e complesse (L.N.); and by the GNSAGA of INDAM. The authors would like to thank the referees for their useful comments and suggestions.uk_UA
dc.identifier.citationSymplectic Applicability of Lagrangian Surfaces / E. Musso, L. Nicolodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 24 назв. — англ.uk_UA
dc.identifier.issn1815-0659
dc.identifier.other2000 Mathematics Subject Classification: 53A07; 53B99; 53D12; 53A15
dc.identifier.urihttps://nasplib.isofts.kiev.ua/handle/123456789/149108
dc.language.isoenuk_UA
dc.publisherІнститут математики НАН Україниuk_UA
dc.relation.ispartofSymmetry, Integrability and Geometry: Methods and Applications
dc.statuspublished earlieruk_UA
dc.titleSymplectic Applicability of Lagrangian Surfacesuk_UA
dc.typeArticleuk_UA

Файли

Оригінальний контейнер

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
67-Musso.pdf
Розмір:
297.45 KB
Формат:
Adobe Portable Document Format
Опис:
Стаття

Контейнер ліцензії

Зараз показуємо 1 - 1 з 1
Завантаження...
Ескіз
Назва:
license.txt
Розмір:
817 B
Формат:
Item-specific license agreed upon to submission
Опис: